Collagen/chitosan hybrid 3D-scaffolds as potential biomaterials for tissue engineering
Artículo académico
Visión general
Identidad
Información adicional de documento
Ver todos
Visión general
Abstracto
Chitosan (CHT) has been reported to be biocompatible, bio-absorbable and particularly, is considered a good wound-healing accelerator. On the other hand, collagen (CGN) is one of the most widely used matrix biomaterial in tissue engineering. Highly porous CGN single 3D-scaffolds have been used to support in vitro growth of many types of tissues. We fabricated hybrid 3D-scaffold biomaterials by mixing CHT from native shrimp waste streams and CGN from tilapia aquaculture waste by-products, applying previously developed methodologies involving solvent casting and freeze-drying. CGN/CHT hybrid 3D-scaffolds were characterised according to its water uptake capacity, mechanical properties, thermal behaviour (TGA), and morphology (SEM). Hybrid 3D-scaffolds showed improved stability, greater porosity, increased thermal stability and mechanical properties, as well higher biodegradation as compared to single 3D-scaffolds. Cell culture incubation with adipose tissue-derived stem cell (ADSC) and SEM imaging showed that CGN/CHT hybrid 3D-scaffolds allowed ADSC adhering, spreading, and growing in vitro.