Production and Regression Models for Biomass and Carbon Captured in Gmelina arborea Roxb. Trees in Short Rotation Coppice Plantations in Costa Rica Artículo académico uri icon

Abstracto

  • Mortality, diameter at 30 cm over ground level, height, biomass production, and carbon capture (CC) for different tree components (trunk, bark, branches, and leaves) in two locations in Costa Rica, during their first three years and with three plantation spacings (1.0 × 0.5 m, 1.0 × 1.0 m, and 1.0 × 2.0 m) were obtained for Gmelina arborea Roxb. trees growing in short rotation coppice systems (SRC). In addition, regression models were developed to predict biomass production and CC using location, age, spacing, and their interactions. Biomass production was measured by weight of trees without considering dendrometric variables. Results showed that mortality was lower than 15% for one location, with probable high fertility, and almost 85% for the other location. Diameter and height of trees increased with plantation age in both locations. The highest biomass production and CC were observed in the spacings of 1.0 × 0.5 m2 and 1.0 × 1.0 m2, with 20 Mg/ha/year and 8 Mg/ha/year, respectively. The models to predict biomass production in trunk with bark, branches, leaves, total biomass without leaves, and CC in trunk, branch, and total biomass were developed using this equation: Y = β1 + β2 (location × age) + β3 (age) + β4 (spacing). The R2 values varied from 0.66 to 0.84, with error from 0.88 to 10.75 and indicators of goodness of fit from 60 to 83%.

fecha de publicación

  • 2019