The phosphatidylinositol 3-kinase–AKT–mammalian target of rapamycin (mTOR) pathway has been implicated in breast carcinogenesis. However, there has been no large-scale investigation of genetic variants in the mTOR pathway and breast cancer risk. We examined 28847 single-nucleotide polymorphisms (SNPs) in 61 mTOR pathway genes in the African American Breast Cancer Epidemiology and Risk consortium of 3663 cases [1983 estrogen receptor-positive (ER+) and 1098 ER-negative (ER−)] and 4687 controls. Gene-level analyses were conducted using the adaptive rank truncated product (ARTP) test for 10773 SNPs that were not highly correlated ( r2 < 0.8), and SNP-level analyses were conducted with logistic regression. Among genes that were prioritized (nominal P < 0.05, ARTP tests), associations were observed for intronic SNPs TSC2 rs181088346 [odds ratio (OR) of each copy of variant allele = 0.77, 95% confidence interval (CI) = 0.65–0.88 for all breast cancer] and BRAF rs114729114 (OR = 1.53, 95% CI = 1.24–1.91 for all breast cancer and OR = 2.03, 95% CI = 1.50–2.76 for ER− tumors). For ER− tumors, intronic SNPs PGF rs11542848 (OR = 1.38, 95% CI = 1.15–1.66) and rs61759375 (OR = 1.34, 95% CI = 1.14–1.57) and MAPK3 rs78564187 (OR = 1.26, 95% CI = 1.11–1.43) were associated with increased risk. These SNPs were significant at a gene-wide level (Bonferroni-corrected P < 0.05). The variant allele of RPS6KB2 rs35363135, a synonymous coding SNP, was more likely to be observed in ER− than ER+ tumors (OR = 1.18, 95% CI = 1.05–1.31, gene-wide Bonferroni-corrected P = 0.06). In conclusion, specific mTOR pathway genes are potentially important to breast cancer risk and to the ER negativity in African American women.